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Abstract 

In this paper, we look for the relevance of chaos in the well-known Hicks-

Samuelson’s oscillator model investigating the endogenous fluctuations of 

the national income between two limits: full employment income and 

under-employment income. We compute the Lyapunov exponent, via 

Monte-Carlo simulations, to detect chaos in the evolution of the income 

between the both limits. In case of positive Lyapunov exponent and large 

values of parameter (i.e. marginal propensity to consume and technical 

coefficient for capital), the evolution of income is seen to be chaotic. The 

model also may contain a quasi-periodic attractor that can be chaotic or not.  
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1. Introduction 

 

The original linear model of accelerator-multiplier developed by P.A. 

Samuelson (1939) relies on a multiplier mechanism, which is based on a 

simple Keynesian consumption with a lag, and investment, depending on 

the variation in consumption (determined by the level of economic 

activity), which involves the accelerator mechanism. The combination of 

these two mechanisms gives rise to the Samuelson’s oscillator.  

In his paper, Samuelson explains how multiplier and acceleration generate 

business cycles and fluctuations in national income. To demonstrate his 

purpose, he chooses several values of the marginal propensity to consume 

and the marginal coefficient of capital. According to certain values of these 

parameters, the evolution of national income exhibits oscillations. These 

oscillations may be damped, perfectly regular or explosive. Although this 

model contains some valid elements regarding the explication of economic 

fluctuations, it is not able to produce lasting business cycles. Moreover, 

empirically observed values of its coefficients imply that the trajectory of 

income is unstable (Westerhoff, 2006).  

Thus, improving the Samuelson’ model, JR Hicks (1950) adds some 

changes by indicating that in a stationary state, induced as well as total net 

investment must be nil and gross investment must be equal to depreciation. 

Furthermore, he adds a floor (the under-employment income) and a ceiling 

(the full employment income) in this model and formulates a piecewise 

linear framework that can produce bounded oscillations. He also adds a 
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geometric growth model that can be coupled with the business cycles. 

Some authors find that “quasi-periodic attractors” can occur in the basic 

Hicks model and other authors investigate the mathematical properties of 

such a model (Gallegati, Gardini, Puu and Sushko, 2003).  

In this paper, we show that, even though nonlinearity is a necessary (but 

not sufficient) condition for the occurrence of chaos in dynamical systems, 

the Samuelson-Hicks model displays chaos for plausible and widely used 

parameters values. Thus, we search the relevance of chaos characterized by 

quasi-periodic attractors by using Monte-Carlo simulation to estimate the 

Average Lyapunov Exponent that is an indicator of the degree of chaos. 

This paper contains the following sections. Section 2 presents an overview 

of chaotic models and the Samuelson-Hicks oscillator as well. Section 3 

shows the evolution of the income between the floor and the ceiling. 

Section 4 exhibits the relevance of chaos by estimating the Average 

Lyapunov Exponent with Monte-Carlo simulation. Section 5 analyzes the 

possibility of the quasi-periodic attractor occurrence and makes a 

comparison between chaotic evolution and periodic, damped or explosive 

oscillations of national income. Section 6 concludes.  

 

2. Chaotic model in economics and Samuelson-Hicks oscillator: 

An overview 

 

Chaos theory is primarily used in the meteorology fields (Lorenz, 1960, 

1972). The main insight behind this concept is that even simple 
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deterministic system can sometimes produce unpredictable situations 

notably when such deterministic system has a sensitivity to initials 

conditions in the short run.  

Traditionally, chaos theory is analyzed by means of a logistic function used 

as a simple model of biological growth (Baumol et Benhabib, 1989) such 

as:  

yt+1 = ayt (1 – yt) with 0 < a < 4     [1] 

 

Figure 1 represents the evolution of the x variable (y-axis) as parameter a 

varies (x-axis). 

 

Figure 1: Evolution of the system as parameter a varies 

 

This Figure was shaped by simulating the evolution of the system over 

10000 iterations. It shows that if a system exhibits repeated periods 
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doubling then it will have an infinite number of bifurcations in a finite 

increase of that parameter (Feigenbaum, 1978).  

For 0 ≤ a ≤ 1, the stationary solution at the origin is stable and the system 

exhibits a cycle of period 1. If 1 ≤ a ≤ 3, the stationary solution is stable but 

when a = 3.1, the system undergoes a bifurcation and presents a cycle of 

period 2. If a > 3.1 (and equals around to 3.5) the cycle of period 2 splits 

into a cycle of period 4. From a = 3.57 to 4, the system adopts a chaotic 

behavior except between the values ranging from about 3.82 to about 3.86, 

where a white window appears. This indicates that the system moves from 

chaos back into order, but it bifurcates again and returns to chaos at a = 

3.86. 

 

The inclusion of this kind of model in economic analysis is not recent. For 

example, Mandelbrot (1963) analyses the chaotic variation of speculative 

prices. Kesley (1988), using the overlapping generation model, assert that 

economics models involve chaos. Baumol and Benhabib (1989) present the 

nonlinear models as an example of chaos estimation.  

More recently, Viad et al., (2010), taking an example of chaos in exchange 

rates, show that chaos theory is related with the notion of nonlinearity. 

Federici and Gandolfo, (2014) propose a various tests of chaotic behavior 

in economics by also considering exchange rates. Other authors use chaos 

theory and the attractor approach to identify a chaotic dynamic in the 

evolution of GDP (Verne and Doueiry-Verne, 2019).  
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All these models are based on an econometric analysis taking account the 

random factor via residuals of equations. However, chaos theory can also 

be used in an endogenous fluctuations model that do not include the 

random factor.  

Thus, in the Samuelson’s original paper (1939, p. 76), we have four 

macroeconomic variables: the national income at time t; Yt, which is the 

sum of three components: Governmental expenditure, Gt; consumption 

expenditure, Ct and private investment, It.  

The first relationship between these four variables is an identity relation 

since we have, as in the Keynesian tradition: 

 

Yt, = Ct + It + At       [2] 

With At exogenous (the autonomous expenditures). 

In the Samuelson-Hicks model, investment in determined by the growth of 

income, through the principle of acceleration where investment is 

proportional to the rate of change in income: 

It = k(Yt-1 – Yt-2)        [3] 

With k, the marginal coefficient of capital or the technical coefficient for 

capital e.g. the volume of capital needed to produce one unit of goods 

during one time period.  Yt-1 and Yt-2, are income of one and two periods 

back respectively.  

The third relationship is about consumption expenditure function with the 

lagged income Yt-1. 

Ct = cYt-1        [4] 
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With c, the marginal propensity to consume, we can write the national 

income as: 

 

Yt  = (c + k)Yt-1 – kYt-2 + At                 [5] 

 

From this relation, we can estimate the evolution of income according to 

the values of marginal propensity to consume and the technical coefficient 

for capital. For example, for large values of c and k, the national income 

records explosive oscillations while it presents perfectly periodic 

fluctuations when k = 1 and c = 0.5. If c and k parameters take certain 

values, we obtain the inverted complex roots from the relation [5] written 

in a polynomial form: 

 

Yt [1 – ( c+ k)L + kL
2
] = At       [6] 

 

L is the lag operator where L
k
 = Yt-k 

Thus, in case of oscillations, the determinant is Δ = (c + k)
2
 – 4k < 0 and 

𝐿 =
(𝑐+𝑘)

2
±

𝑖√∆

2
 

Setting 
(𝑐+𝑘)

2
=  𝛼 and  

𝑖√∆

2
=  𝛽, we calculate the modulus p = (α

2
 + β

2
)
0.5

 

 

If p < 1, the values of inverted roots are inside the unit circle of complex 

plane and income oscillations are damped. The process is stationary and the 

national income returns towards its long run value. 
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If p > 1, the values of inverted roots are outside the unit circle of complex 

plane and income oscillations are explosive.   

If p = 1, national income oscillations exhibit perfectly sinusoidal 

fluctuations.   

 

In the Hicks model, the lower limit (the floor) applied to induced 

investment while the upper limit (the ceiling) applied to full employment 

(Gallegati, Gardini, Puu and Sushko, 2003, p. 508). In addition, Hicks 

models a growth process by introducing autonomous expenditures, which 

may be growing exponentially i.e. At = A0(1 + g )
t
 where g is a given 

growth rate and A0 a positive constant. Therefore, the solution of the 

characteristic equation with complex roots is the product of an exponential 

growth i.e. Yt = Y0(1 + g)
t
. 

By substituting the values of At and Yt in [5] we define the stationary 

income and the two limits: The ceiling, e.g. the full employment income 

and the floor, the under-employment income where the induced investment 

is nil and gross investment equals to depreciation.  

From relation [5] we can write: 

 

Yt =  (c + k)Y0(1 + g)
t-1

  – kY0(1 + g)
t-2

 + A0(1 + g)
t
               [7] 

 

By substituting Yt = = Y0(1 + g)
t
 in [7], we have: 

 

Y0(1+g)
t
 – (c + k)Y0(1 + g)

t-1
 + kY0(1 + g)

t-2
 = A0(1 + g)

t
   [8] 
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And: 

 

Y0(1+g)
t-2

 [ (1 + g)
2
  –  (c + k) (1 + g) + k] = A0(1 + g)

t
  [9] 

Finally, we obtain the stationary income or the equilibrium path: 

 

𝑌0 =
𝐴0(1+𝑔)2

[(1+𝑔)2−(𝑐+𝑘)(1+𝑔)+𝑘]
     [10] 

 

Relation [10] determines the equilibrium path around which the income Yt 

may fluctuate.    

In the Hicks model, we define the equilibrium growth path as: 

YE = Y0(1 + g)
t
 

When the technical coefficient for capital k > 1, the national income leave 

the equilibrium path and inevitably reaches the ceiling of full employment 

for a maximum of two periods. Then, during the recession, national income   

falls on the floor.  

The equation of the full employment path is: YMt = YM0(1 + g)
t
. 

By substituting this term in the relation [5], we obtain: 

 

Yt =  (c + k)YM0(1 + g)
t-1

  – kYM0(1 + g)
t-2

 + A0(1 + g)
t
   [11] 

 

In fact:  

 

(c + k)YM0(1 + g)
t-1

 –  kYM0(1 + g)
t-2

 + A0(1 + g)
t
 < YM0(1 + g)

t
      [12] 
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Relation [12] is verified if: 

 

YM0 > Y0 (computed in the relation [10]). 

 

After two periods, a change in the trajectory of national income occurs. It is 

the beginning of the recession phase where the induced investment 

disappears due to the decline in production. Hence, k = 0 and the relation 

[5] is simplified: 

 

Yt  = cYt-1 + Gt       [13] 

 

We define the under-employment path (the floor) as YLt = YL0(1 + g)
t
 . By 

using this term in the relation [13], we obtain: 

 

YL0(1 + g)
t
 = c YL0(1 + g)

t-1
 + A0(1 + g)

t
 

 

By rearranging the terms, we have:  

 

YL0(1 + g)
t-1

(1 –  g – c ) = A0(1 + g)
t
     [14] 

 

Finally, we compute the under-employment income as follows: 

 

𝑌𝐿0 =
𝐴0(1+𝑔)

1−𝑔−𝑐
      [15] 
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During the recession phase, Yt falls to the under-employment level.  

 

According to certain values of the marginal propensity to consume and the 

technical coefficient for capital, income displays several kinds of 

oscillations between the both limits.  

 

3. Evolution of income between floor and ceiling 

 

In order to display the evolution of income between ceiling and floor, we 

assume several values concerning the technical coefficient for capital, k and 

the marginal propensity to consume c. In addition, we take a period of 30 

years and suppose that the economic growth rate g = 5% per year.  

 

If we take the special case where c = 0.5 and k = 1, the evolution of income 

is seen to be perfectly sinusoidal between the both limits.  

 

Figure 2: Sinusoidal evolution of income between ceiling and floor 
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In the Hicks model, the economy is not stationary and exhibits a positive 

growth rate.  As long as c < 0.6 and k < 1, the fluctuations of the national 

income Yt remain inside the both limits and are damped as the Figure 3 

displays it.  

 

Figure 3: Damped fluctuations  
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For example, if c = 0.6 and k = 0.8, the fluctuations of income are damped 

(the national income is running towards its equilibrium value) and remain 

inside the corridor as long as the marginal propensity to consume is less 

than 0.6.  

However, when c > 0.6 and k > 1, oscillations in national income become 

explosive. 
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Figure 4: Explosive fluctuations  
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For c = 0.7 and k = 1.2, explosive fluctuations of income are out of the 

upper and lower limits.  

 

The Samuelson-Hicks model can exhibit chaos because it implies a second-

order difference equation for output. This arises because investment is 

assumed to depend on the lagged change in output. The key mechanism 

highlighted by Samuelson is the accelerator effect, which arises because 

investment depends on the change in output. The assumption that 

investment depends on the lagged change in output is not essential; the 

accelerator effect also arises if investment depends on the current change in 

output. But in that case, chaos does not arise as output is a first-order 

difference equation, not second-order. Thus, if output is a second-order 

equation, the occurrence and relevance of chaos, measured by the 

Lyapunov exponent, depend on the values of capital coefficient (k) and 

marginal propensity to consume (c) 
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4. The Lyapunov exponent 

 

The Lyapunov exponent is the quantity that characterizes the rate of 

separation of infinitesimal close trajectories. It plays an important role in 

identifying of the chaotic degree of the strange attractor (Wu and Baleanu, 

2015). The number of Lyapunov exponents equals the number of state 

variables considered. If we consider a unidimensional system, we may 

compute one single exponent (Lopez-Jéminez et al., 2002). 

A positive Lyapunov exponent does cause this separation to increase over 

further iterations and shows a chaotic dynamic. A negative Lyapunov 

exponent indicates an attracting fixed point or periodic cycle and implies 

non-chaotic dynamic characterized by a strange non-chaotic attractor. A 

Lyapunov exponent equals to zero displays sinusoidal oscillations and 

periodic attractor.  

For example, for searching chaos in the Hicks model, we use the Wolf 

method (1985) to estimate the Lyapunov exponent (called λt) with different 

values of the marginal propensity to consume c and the marginal 

coefficient of capital k. 

By this method, we start from an initial condition Yt in the Hicks model and 

we consider a very close value of separation, where the initial distance d0 is 

extremely small.  The absolute value of dt after t iteration is: 

 

|𝑑𝑡| = |𝑑0|𝑒𝜆𝑡                                             [16] 

It is equivalent to write: 
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𝜆𝑡 = lim𝑡→∞
1

𝑡
|

𝜕𝑑(𝑡)

𝜕𝑑𝑜
|           [17] 

 

We choose the value of the separation d0 = 10
 – 4 

and obtain values of λt that 

give the values of the Lyapunov Exponent.  After a Monte Carlo simulation 

with 1000 random values of coefficient for capital, k (ranging from 0 to 4), 

we estimate the Average Lyapunov Exxponent (ALE). Since chaos arises, 

as output is a second order difference equation, the marginal propensity to 

consume (include in the first-order difference equation) is fixed. It takes 

several values (0.5, 0.6 and 0.8) in the Samuelson’s original paper (1939, p. 

77). We arbitrarily choose c = 0.8. 

 

Figure 5: ALE evolution with respect to coefficient for capital 
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characterized by damped oscillations (stationary process with modulus ρ < 

1). Then, for k = 1, the ALE is nil meaning that the national income 

fluctuations are sinusoidal (with the modulus ρ = 1). It becomes more 

relevant when k > 1. This means that values in the region k > 1 are much 

more likely to lead to chaos. However, as Feigenbaum (1978) shows it in 

Figure 1 (where a parameter ranges from about 3.82 to about 3.86), for k = 

1.5, ALE = 0. This means that national income moves from chaos back into 

order and returns to chaos at k > 1.5. From k > 1.5 to k = 4, the national 

income exhibits an increasingly chaotic dynamic. In such a region, the 

oscillations are explosive and the Lyapunov exponent is strongly positive 

(with modulus ρ >1). 

According to the values of the technical coefficient for capital, which is the 

key parameter leading the national income to chaos, we can observe the 

occurrence of several attractors inside or outside the both limits.  

 

5. Quasi-periodic attractors in the Hicks model 

 

Chaos theory involves the concept of the strange attractor for which the 

trajectories of a variable have a bizarre structure, being nether simple 

smooth, nor continuous curves but fractals (Puu, 1997). Fractals 

(Mandelbrot, 1982) could be an indefinite set of unconnected points or a 

smooth curve with mathematical discontinuity or curve that is fully 

connected but discontinuous everywhere.  
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In fact, we have quasi-periodic attractor when every trajectory winds 

around endlessly on a torus (Strogatz, 1994).  

Thus, the following Figures represent the strange attractor showing the 

national income evolution in the space phase where each ordered pair (Yt,, 

Yt-1; t = 2, …, N) is displayed in the plane (Figures 6). The y-axis represents 

the values of Yt and x-axis, values of Yt-1 (Kriz, 2011). The three levels of 

income (equilibrium income, full employment income and under-

employment income) are represented as well.    

 

Figure 6-a: National income in the space phase: The perfectly periodic 

attractor between the both limits 

 

  

 

This Figure shows a perfectly periodic attractor between the upper limit 

(the income of full employment, called YM0) and the lower limit (the 
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the modulus ρ = 1 (e.g. that oscillations are perfectly sinusoidal) and the 

periodic attractor is inside the both limits. In addition, the Lyapunov 

exponent is nil meaning that a periodic attractor occurs. However, a rise in 

the propensity to consume (the coefficient of capital remaining equal to 

one), pushes the periodic attractor out of the upper limit (Figure 6-b).   

 

Figure 6-b: National income in the space phase: The perfectly periodic 

attractor out of the upper limit 
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(the modulus p < 1), and the figure exhibits a strange non-chaotic attractor 

taking the form of an ellipsoid (Figure 6-c).  

 

Figure 6-c: National income in the space phase: The occurrence of a 

strange non chaotic attractor 

 

 

 

This Figure shows that even though the national income exhibits explosive 

fluctuations in the short run, a strange non-chaotic attractor does exist in 

the long run that pushes income to regain regular growth. In other words, 

the national income enters the ellipsoid and then remains trapped therein 

for all future time (Hirsh, Smale and Devaney, 2004). However when c > 

0.5 and k >1, the national income records explosive fluctuations and moves 

away his trajectory (Figure 6-d).  

 

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

2.25

1.97 1.98 1.99 2 2.01 2.02 2.03 2.04

YM0 

Y0 

YL0 



20 
 

Figure 6-d: National income in the space phase: The go out of the 

trajectory 

 

 

This Figure shows the case where c = 0.8 and k = 1.6 and displays a chaotic 

strange attractor that goes beyond both limits. In this hypothesis, the 

national income that starting far from the origin goes away the ellipsoid 

and does not return on the equilibrium path. The trajectory of income 

moves away from the ellipsoid for all future time. 

 

In addition, all figures exhibit a periodic or quasi-periodic attractor (that 

can be chaotic or not) when the national income records oscillations e.g. 

when the determinant of the polynomial equation Δ is negative. On the 

contrary, if Δ > 0 (when the parameters c = 0.8 and k > 3), the evolution of 

national income becomes explosive without oscillations and the quasi-

periodic attractor disappears. 
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6. Conclusion 

 

In the Samuelson-Hicks model, the oscillations of income between two 

limits, e.g. the full employment income and under-employment income, 

depend on the values of the marginal propensity to consume and the 

technical coefficient for capital. However, the coefficient for capital is the 

key parameter explaining the relevance of chaos as output is a second order 

difference equation.  

Furthermore, according to some values of the Average Lyapunov Exponent 

(ALE), a strange attractor exists and may be chaotic or not.  

When the ALE is negative, the system has an attracting fixed point or  

periodic cycles characterized by a strange non chaotic attractor localized 

between the both limits. When the ALE is null, the system displays  

perfectly sinusoidal fluctuations inside the both limits and presents a 

perfectly periodic attractor. Chaos and explosive oscillations may occur 

with certain high values of the two parameters for which the determinant of 

the polynomial equation remains negative. In such a hypothesis, the ALE 

becomes positive and the income moves out of equilibrium. Moreover, the 

attractor becomes chaotic and moves outside both limits. This means that in 

the Hicks-Samuelson model, the relevance of chaos depends on values 

taken by the coefficient for capital. For lower values, income oscillations 

are damped and the attractor is between the two limits. In addition, the ALE 

is negative and the strange attractor pushes income to regain regular 
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growth. This illustrates a strange non-chaotic attractor where the income 

enters the ellipsoid. 

The attractor and the oscillations disappears when the determinant of the 

polynomial equation is positive e.g., when the marginal propensity to 

consume and the coefficient of capital reach larger values than in the 

aforementioned case. 
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