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Abstract:   Economics is currently experiencing a climate of uncertainty regarding the 

soundness of its theoretical framework and even its status as a science.  Much of the  

criticism is within the discipline, and emphasizes the alleged failure of the neoclassical  

viewpoint.  This article proposes the deployment of partial modeling, utilizing Boolean 

 networks (BNs), as an inductive discovery procedure for the development of economic  

theory.   The method is presented in detail and then linked to the Semantic View of  

Theories (SVT), closely identified with Bas van Fraassen and Patrick Suppes, in which  

models are construed as mediators creatively negotiating between theory and reality.  It is  

suggested that this approach may be appropriate for economics and, by implication, for  

any science in which there is no consensus theory, and a wide range of viewpoints  

compete for acceptance. 
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1. Introduction.          

     Joseph Stiglitz, recalling his chairmanship of the Council of Economic Advisers (1995-1997), 

noted that one of his major problems was hiring a macroeconomist.  As he recalled it:   “The 

prevailing models taught in most graduate schools were based on neoclassical economics.  I 

wondered how the president, who had been elected on a platform of ‘Jobs!  Jobs!  Jobs!’ would 

respond to one of our brightest and best young economists as he or she explained that there was 

no such thing as unemployment” (Stiglitz, 2010, p. 350, note 14).  Like most satirical 

observations, this one contains (at least) a grain of truth.  Of course neoclassical economists are 

aware that unemployment is real.  But the target of Stiglitz’ barb is the idealized neoclassical 

assumption of full employment of labor and other resources.  This stipulation, together with 

other similarly unrealistic assumptions---e.g., perfect competition, fixed consumer income, 

perfect mobility of factors of production, as well as several others---comprise the foundation of 

Léon Walras’ (1834-1910) General Equilibrium Theory (GET): a critical component of the 

neoclassical framework and of mainstream economics (Turk, 2012).  While any scientific theory 

is to some extent an abstraction, critics of GET maintain that the present form of this model is a 

purely mathematical achievement with remarkable internal consistency but total irrelevance to 

economic life (Ackerman, 2002).  Criticism of GET, of its larger neoclassical context, and 

indeed of the entire science, has dramatically escalated---helped by a strong assist from the 

blogosphere (The Economist, December 28, 2011)---following the 2008 market collapse.  Failure 

to predict the crisis, or to expeditiously cure it, has suggested that GET---and, in the bargain---all 

of economics, was hopelessly out of touch with reality.  “The economist has no clothes,” as one 

critic observed (Nadeau, 2008).  (Yet, and importantly, it was probably never that simple.  

Historically, as The Economist (April 12, 2014) noted, economic slumps have generated 

emergency models “cobbled together at the bottom of financial cliffs.  Often what starts out as a 

post-crisis sticking plaster becomes a permanent feature of the system.  If history is any guide, 

decisions taken now will reverberate for decades.”)    Perhaps most emblematic of the deepening 

self-critical mood was a February 9, 2015 New York Times colloquium of American economists 

which addressed “the profession’s poor track record in forecasting and planning, and the 

continued struggles of many Americans.”    
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    This article is not the addition of one more voice---that of an anthropologist---to the growing 

heterodox chorus calling for an end to the neoclassical view.  Nor is it a retrenched attempt to 

defend that orthodoxy in the face of its historical record.  Instead, the article proposes an 

inductive, exploratory approach in which partial models of an economic system---i.e., “models 

that are at the  same level of abstraction and represent different ‘views’ of a phenomenon” 

(Amigoni and Schiaffonati, 2008)---are deployed in a computational strategy in which 

components of the models are combined in unpredictable ways. A theory is thus a synthesis of 

input models, and should be tested for its ability to predict an actual economy.  Models, in this 

approach, are thus exploratory devices and clearly differ from theories.  In accordance with the 

Semantic View of Theories (SVT) pioneered by Bas van Fraassen and Patrick Suppes, and 

subsequently developed by Margaret Morrison, Mary S. Morgan, Francesco Amigoni and Viola 

Schiaffonati, we would designate models as cognitive tools or, equivalently, as conceptual 

instruments, that “mediate” between the referent (reality) and the synthetic interpretation, or 

theory.  The strategy is illustrated through a Boolean Networks (BN) model originally utilized in 

cell biology.  BNs are a class of computational models primarily distinguished by discretized 

variables (nodes) for which input-output relations are governed by Boolean functions (Helikar et 

al., 2011).  (Alternative strategies, including hybridization with agent-based models or ABMs, 

are certainly possible.   New approaches are being developed all the time.  The BN method was 

chosen because of its relative simplicity and demonstrated accuracy in partial modeling of 

complex systems). In the following section, each major step of BN partial modeling is explained 

in (mostly) nonmathematical detail, and sample economic implications are embedded within the 

discussion. Emphasis is placed on two key properties: the use of modeling conventions or 

standards when partial models are combined; the ability of the method to incorporate 

externalities, such as cultural or religious variables, for which quantitative data are frequently 

inadequate or lacking.  The BN method is then examined in the larger context of SVT.  Here, the 

autonomy of the partial modeling procedure, in which the modeler cannot predict what the 

results will be, is construed as a computational variant of Morrison and Morgan’s approach. As a 

programmatic example, partial modeling is proposed for recent theoretical controversies related 

to high-frequency trading (HFT).  It is concluded that partial modeling is appropriate  

      3    



for economics---and by extension, for any science---in which the traditional framework has 

failed, there is no consensus theory, and an array of alternative viewpoints compete for 

recognition.    

 

2. Addressing the climate of uncertainty in economic theory:  partial modeling with 

Boolean networks. 

 

     Boolean networks (BNs) began as the almost inevitable outgrowth of the Digital 

Revolution which swept the behavioral, social and biological sciences in the late Fifties and 

early Sixties. Computational analogies abounded, ultimately reaching their limit when 

Vladimir Brix announced that “you are a computer” (Brix, 1970).  The initial approaches 

were homeostatic:  The new discipline of cybernetics, as described by mathematician Norbert 

Wiener (1894-1964) and psychiatrist W. Ross Ashby (1903-1972) comprised living and 

mechanical systems in which output was sensed, compared with a goal, and the discrepancy 

was reduced, generating a stable state.  In a major theoretical shift, the approach was 

extended by Magoroh Maruyama (1963) who proclaimed a “second cybernetics”:  

Deviations need not result in correction and continued stability, but may in fact “amplify” 

and generate widespread systemic change.  Influenced by these currents, economist Herbert 

Simon anticipated BNs in his “satisficing” concept of the economic actor (Simon, 1947). 

Contrasting sharply with the optimizing agents of neoclassical theory---firms which 

maximize profits from production and distribution, households which maximize utility, or 

satisfaction, from consumption---satisficing (satisfy and suffice) posited an “aspiration level” 

or acceptability threshold as a tractable heuristic for decision-making behavior.   

     Herbert Simon’s two seminal concepts---binary variables and thresholds---were later 

incorporated into a fully realized BN model by theoretical biologist Stuart A. Kauffman 

(1969).  Its basic properties were, and are, comparatively simple.  Following Helikar et al. 

(2011), a BN is a discrete model comprised of a set of components or nodes {σ1, σ2,. . .σn} 

which can typically assume only two values, ON (1) or OFF (0); these correspond, 

respectively, to the active or inactive state of the variable, or to its above- or below-threshold 

value.  Nodes are linked by a “wiring diagram” formulated by the investigator in a first  
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approximation. The diagram may be---and often is---somewhat speculative, especially if the 

variables are not yet well-understood (Davidich and Bornholdt, 2008; Helikar et al., 2011). 

Finally, the binary output of each node is specified by logical operations utilizing AND, OR, 

and NOT; the input-output relations, or Boolean functions {B1, B2,. . .Bn}, are represented in 

a “truth table”.  The model is thus algebraic (although its discrete values, 0 and 1, may be 

regarded as the limits of continuous functions, and in fact, hybrid variants utilizing ordinary 

differential equations, or ODEs, continue to be developed).  In   Kauffman’s summary (1991, 

p. 77):  “The dynamic behavior of each variable---that is, whether it will be on or off at the 

next moment---is governed by a logical switching rule called a Boolean function. The 

function specifies the activity of a variable in response to all the possible combinations of 

activities in the input variables.    One such rule is the Boolean OR function, which says that 

a variable will be active if any of its input variables is active.   Alternatively, the AND 

function declares that a variable will become active only if all its inputs are currently active.”  

Under the best of conditions---i.e., when educated guesswork is minimal---the BN approach 

has proven to be a valuable approximation technique.  BNs, and their many variants, have 

been used in a wide, and expanding, range of modeling applications, “including gene 

regulatory systems, spin glasses, evolution, social sciences, the stock market, circuit theory 

and computer science” (Richardson, 2005, p. 365), frequently yielding results with high 

predictive power.   

     Partial modeling utilizing BNs has recently been applied to a sample problem in 

computational biology (Schlatter et al., 2012).  Alternative BN models of liver-cell 

(hepatocyte) interaction were combined into a larger network representation.   As a 

prerequisite for smooth model integration, the investigators proposed a set of standards or 

conventions, some of which were highly unrealistic:  the ON (1) state of a network molecule 

may be discretized as multi-valued logic to represent varying concentrations, e.g. high, low, 

very low, but only if the variations have a functional effect; quantitative experimental data 

are to be utilized in configuring node interactions; the treatment of time is made somewhat 

artificial in that the value assigned to a node is based on the peak concentration of the 

referent molecule at any time point in the signaling process; artificial nodes which do not 

correspond to any molecular species sum up the network response to selected input nodes  
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with regard to a cellular function of interest (e.g., the effect of the inputs on apoptosis, or cell 

death), thus constituting a form of early automated analysis; certain input nodes 

corresponding to molecules which are constitutively active (i.e., operative in the cell under 

all physiological conditions) are initialized at the ON (1) state; finally, and most importantly 

for uncertain modeling situations, artificial nodes are used to “model unknown 

interrelations.”  In the liver-cell example, cells switch between two different forms of 

apoptosis, but the underlying protein mechanism, which has not been identified, was 

modeled by an artificial node.   

     Using those conventions, the study demonstrated the coupling of two BN models in two 

different biological examples:  In the first example, BN models of two different cell types 

were combined; the second example combined partial models of a single cell type.  The 

accuracy of the first example was experimentally verified, and then used as a basis for 

evaluating the second (partial) modeling approach.  In the first example, SQUAD (Standard 

Qualitative Dynamical Systems) was utilized:  This is a hybrid modeling approach---i.e., one 

which synthesizes discrete and continuous methods---which initially configures a target 

network as discrete dynamical system (e.g., a BN), and then applies a binary decision 

algorithm to identify all of its steady states (DiCara et al., 2007). SQUAD simulation 

essentially consists of three main stages.  First, the network is described by a graph or wiring 

diagram which is then converted into a BN.   Through the use of a BN algorithm, all the 

steady states of the system are identified.  Second, through the application of a toolbox it is 

possible to convert a BN into a continuous dynamical system configured as ordinary 

differential equations (ODEs); this transform permits the modeler to identify the steady states 

of the newly-developed continuous model via reference to the preceding BN.  

Metaphorically, one might think of the steady states of the initial BN as mathematically 

“visible beneath” the continuous model. Finally, dynamic simulation methods, especially 

perturbation techniques, reveal the overall behavior of the network and the roles of specific 

nodes.   (The perturbations can be sensitively configured; for example, singlepulse can 

modify a node at a single time point; rangepulse can sustain a perturbation for some 

specified time interval.)  In this manner, SQUAD makes possible the simulation of large  
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signaling or regulatory networks through identification and perturbation of multiple stable 

states.  Importantly, SQUAD does not provide information regarding the states that can 

arrive at any given stable state; i.e., it is uninformative regarding basins of attraction.   

     For comparison with the experimentally-supported SQUAD results, partial BN models of 

the molecular network of a single cell type were combined using CellNetAnalyzer (CNA), a 

Matlab toolbox for BN analysis.  A key property of this approach is the simplification of the 

partial models to avoid an intractable result when they are combined.  Thus CNA, given the 

standards described above, computes node values that approach a unique steady state.  This is 

done by excluding node values that will produce multiple steady states.  In addition, feedback 

loops are excluded because they can frequently yield oscillations. Through the use of these, 

and additional, simplifying procedures, the partial BNs were then combined.  Initially, the 

partial models were pooled in common model files, and modeler decisions were made 

regarding the interactions of common nodes; an automated “quality assurance method” 

evaluated all possible input node values consistent with the modeling standards.  Results of 

the two approaches were very similar, and the combination of partial models “was achieved 

without fundamental adjustments and the complexity was only moderately increased” 

(Schlatter et al., 2012).   

     The study has possible direct implications for partial modeling in economics.  Two 

aspects deserve closer attention:  the use of simplifying assumptions, i.e. modeling 

conventions or standards, when combining partial models; the ability of BNs to include 

system components (e.g. cultural or religious variables) for which quantitative data are 

minimal or lacking, without significant loss of predictive power.  As an example of the first 

property, in BN models of the global economy, initialization of nodes in the ON (1) state 

could apply to “anti-monopoly” laws enforced by China against US firms doing business in 

that country which require “merger reviews and investigations of alleged anti-competitive 

behavior related to pricing and monopolistic conduct” (Ong and Huber, 2014).  Because 

these regulations, for many modeling purposes, may be considered as “always” present, they 

are systemically analogous to constitutive enzymes in the Schlatter et al. study which remain 

active without regard to physiological conditions.  Similarly, the use of artificial nodes in the 

study to “model unknown interrelations” would be directly applicable to unknown  
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components of command economies such as that of North Korea, where economic statistics 

are regarded as state secrets (Noland, 2012).  Often, the best that one can do is utilize “mirror 

statistics”---e.g. “adding up what other countries say they import from North Korea” to 

estimate its exports; the results, which are almost always highly questionable, would be 

configured as an output from an artificial node representing unknown variables.   

     With regard to the second property, everyone now realizes---and some have been shocked 

by events into realizing---that cultural, religious, and ideological forces, especially in the 

developing world, can impact the world’s economies (Chua, 2002; Kaplan, 2012).  

Accordingly, the institutional economists Greenwod and Holt (2008) vigorously defend the 

extension of their science, through an interdisciplinary framework, into the realm of 

“technology and its relationship to cultural habits.”  Global examples of these “cultural 

habits” are not difficult to find.  Chua (2002) has extensively documented the widespread 

destructive effects of the adoption by Third World countries of democracy and free-market 

economies without a supportive institutional context (i.e. an established tradition of nation-

state governance, socioeconomic classes, and economic upward mobility).  The result has 

been the enrichment of already-dominant minority groups including, as a major example, 

Chinese minorities of the Philippines, Burma, Thailand, and Indonesia.  Ethnic-based income 

disparities have culminated in violent clashes in several of these countries resulting, in some 

cases, social collapse (e.g., Rwanda).  Similarly, my student Elaine Chamberlain 

demonstrated that the success or failure of microfinance organizations in the Middle East and 

North Africa (MENA) can be significantly shaped by local cultural conditions (Chamberlain, 

2015).  The examples could be easily multiplied.  Yet, for many of these cultural agents, 

quantitative data are inadequate or lacking.  This limitation could be addressed through 

educated guesswork, as it often is with molecular systems, provided that mirror data or, even 

better, on-the-ground reports (e.g. from NGOs such as Human Rights Watch, 

http://www.hrw.org) are available.   In those cases, an increase in the cultural activity---for 

example, the growth of an ethnically-based nationalistic movement---would be represented 

as 1; decline would be assigned 0.  If the available data are somewhat fine-grained---e.g. low, 

moderate, high---more precise, but still qualitative, models may be developed using multi-

valued logic.  In this variant, a node may assume more than one value---decimal expressions 
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from 0 to 1---and is typically governed by a threshold rule (Schlatter et al., 2009; Bornholdt, 

2008).  Finally, we will note that BNs are remarkably flexible:  In the event that detailed 

quantitative information becomes available, either for cultural variables or other features of 

the model, it is possible to convert selected nodes into ordinary differential equations 

(ODEs).  

 

Partial models, theories, and the crisis in economic thought. 

   

     The Digital Revolution, which as we have seen, exerted a significant influence on 

theoretical developments in the natural and social sciences some 60 years ago, is now 

extending that influence into the philosophy of science itself.  What is a theory?  A model?  

What do we mean when we speak of a model as having autonomy?  How does autonomy 

affect the concept of scientific representation?  Most importantly in the present context, how 

do these debates escape the confines of philosophy and affect the current state of economic 

theory?  Francesco Amigoni and Viola Schiaffonai (2008) have evaluated these questions.  

As they note, the great strength of computational models, recognized in the early days of the 

Digital Revolution, resides in their ability to process quantities of data such as those routinely 

encountered in molecular cell biology (Amigoni and Schiaffonati, 2008).  But the platform 

had a consequence to some extent unforeseen.  The enormous challenge presented by 

manipulating the ordinary differential equations (ODEs) which describe the kinetic properties 

of molecular interactions led investigators to question the necessity of such descriptions for 

many types of problems (For a similar argument see Bornholdt, 2008).  In effect, 

computational modelers were increasingly led to ask that most fundamental of epistemic 

questions:  “What counts as knowledge?” (Amigoni and Scihaffonati, 2008).  More exactly:  

“The adoption of computer programs, namely computational models, is firstly intended to 

process, manage, and classify huge quantities of data.  Moreover, programs serve also to 

account for the meaning of these data:  what counts as knowledge and what we consider as 

knowledge depends on the data we are able to acquire, on the ways in which these data are 

collected, and on the form in which they are represented.” The historical result, as noted 

earlier, was the discretization of the continuous processes traditionally represented by ODEs,  
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an innovation pioneered during the 1980s in Stephen Wolfram’s cellular automata (CA), and 

Stuart A. Kauffman’s Boolean networks (BNs) utilized here.  However, a remarkable feature 

of these approaches was the inability of the modelers, when presented with simulations of 

highly complex biomolecular interactions, to predict what the results would be, even when 

the rules of the simulation were precisely specified.  Discrete models thus assumed a new and 

unexpected identity:  they became exploratory constructions, “artificial universes evolving in 

accordance with local but uniform rules” (Amigoni and Scihaffonati, 2008).    

     These methodological developments were, fortuitously, consistent with paralleling 

transformations in the philosophy of science.  From the 1920s to the 1960s, the dominant 

understanding of scientific investigation---usually designated the “Syntactic View” and most 

strongly associated with Rudolf Carnap, Carl Hempel, and Herbert Feigl---had placed 

considerable emphasis on the role of “theoretical sentences”.  The latter did not deploy 

natural language but instead contained logical and mathematical symbols, and the symbols of 

the theory.    The theoretical sentences were in turn connected to “observational terms”, 

which referred to the observable properties of a phenomenon, by means of “correspondence 

rules” (sentences which included both theoretical and observational terms).  This “Received 

View” (Putnam, 1962) prevailed until the 1960s, when it was vigorously challenged by 

Patrick Suppes (1960) and Bas Van Fraassen (1980), proponents of a “semantic” strategy. 

One of the key defining features of their Semantic of Theories (SVT) was the replacement of 

the syntactic edifice linked by correspondence rules with set-theoretic relations based on 

structural isomorphism.  Motivated by mathematics and the empirical sciences, Van Fraassen 

proposed that “models occupy center stage” (1980), or more exactly, that a scientific theory 

gives us a family of models to represent phenomena.  This major conceptual shift resulted in 

a view of theory “as determined by the class of its possible realizations” (Amigoni and 

Schiffonati, 2008).  Thus, all possible models of a theory are reduced “to a particular subclass 

that is more manageable and easier to study, being a subset of the set of all models.  The 

goal, hence, is to consider just a subset, limited and manageable, of the whole set of the 

models of the theory and to work on it.”   

     Motivated by these foundational changes, Margaret Morrison and Mary Morgan (1999) 

claimed that models had now acquired an enriched epistemic role.  They are not derived from  
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theory; neither are they fully grounded in empirical observations.  Instead, they are “semi-

autonomous”, sharing components with the world and theory, while not being fully 

connected with either.  Žitko (2013, 95-96) compares the semi-autonomy of models to 

statistical correlation:  “With perfect correlation there is little new knowledge to be acquired 

since th two sets of data will share the same variation, while with zero correlation there is 

even less to learn since the two sets of data have nothing in  common.  It is only in between 

the extreme values that something more can be argued about the two data sets, and a 

meaningful research can begin.”  Because of this semi-autonomy, models are remarkably 

fluid, evolving into novel constructions that challenge traditional theories and (often) 

illuminate the actual world.  Support for this view of science, Morgan and Morrison suggest, 

is not to be found through formal arguments in the manner of the Syntactical school, but by 

finding common properties in the actual work of scientists.  Accordingly, they consider 

accounts of model-building in economics, chemistry, and physics, eliciting from their 

analyses a portrait of the scientist closely resembling that of the artist.  (For a similar 

conclusion based on extensive interviews with scientists and artists see the engagingly-

written Notebooks of the Mind (1997) by Vera John-Steiner.)   In a key passage, they note:  

“As we have pointed out, there are no rules for model building and so the very activity of 

construction creates an opportunity to learn:  what will fit together and how?  Perhaps this is 

why modeling is considered in many circles an art or craft; it does not necessarily involve the 

most sophisticated mathematics or require extensive knowledge of every aspect of the 

system.”  (Morrison and Morgan’s construal of model-building is, of course, to be 

distinguished from the “cobbling together” of models under emergency conditions discussed 

in The Economist article referenced at the beginning). This perspective is evidenced in a 

study by Olav Bjerkholt (2007), which documents the early development of business-cycle 

theory (1920s-1930s), revealing in the process how “bits of the business-cycle theory and 

evidence could be integrated together into a model” (Morrison and Morgan, 1999).  The 

studies depict in detail how the cognitive “notebooks” (John-Steiner, 1997) of the 

econometrician Ragnar Frisch were a dynamic amalgam of economic and physical theories 

(the latter including the famous, and controversial, pendulum analogy), statistics, direct 

observations and, intriguingly, “heroic guesses, transgressing the observational facts” 
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(Frisch, 2010, [orig.1930]).  The “model world” which emerged from Frisch’s mediating 

approach comprised “those indefinable things in the real world which we might call 

‘essentials’…with regard to our own ends” (Frisch, 2010, [orig. 1930).   R.I.G. Hughes 

(1997) anticipating the views of Amigoni and Schiaffonati (2008), has shown how Frisch’s 

mediating approach lends itself to simulation.  Deploying cellular automata (CA), he 

discovered “generic cycles which had empirical credibility, and provided a prediction of a 

new cycle which had not yet been observed in the data” (Morrison and Morgan, 1999).   

     But Frisch’s ideas were developed nearly a century ago.  Can partial modeling address 

today’s economic issues and, in particular, the current crisis in economic theory?  We would 

argue that this is indeed the case, and would propose as a sample study that the several 

competing models of high-frequency trading (HFT) could be simultaneously subjected to a 

mediating, computational approach.  HFT is a relatively recent computer platform, currently 

expanding throughout much of the developed world, and into the BRICS countries, in which 

firms use complex, high-speed algorithms to detect supply-and-demand opportunities, and to 

execute trades.  These transactions, fully automated, are typically conducted in milliseconds 

(thousandths of a second); Johnson et al. (2013) report that a new chip, the iX-eCute, can 

“prepare trades in 740 nanoseconds” (a nanosecond is a billionth of a second).  Although a 

single HFT trade will often net less than a penny in profit per share, the ultrafast transaction 

speed permits thousands of transactions a day (Bell, 2013).  The practice is spreading rapidly, 

transforming market culture into “geographies” of competing algorithms (Grindsted, 2016).  

According to a 2016 estimate by the Congressional Research Service, HFT “accounts for 

55% of trading volume in US equity markets and about 40% in European markets” (Miller 

and Shorter, 2016).   High-speed trading is intensely controversial---and hence the object of 

much model-building---especially since the May 6, 2010 “flash crash”, and the later 

appearance of Flash Boys, a critical popular account of HFT (Lewis, 2015).  Many recent 

studies assert that the practice may strongly contribute to national and global market 

volatility, and should therefore be subjected to stronger government regulation (Adrian, 

2016).  To explore HFT volatility, Johnson et al. (2013), utilizing NANEX NxCore software, 

analyzed the millisecond-resolution price stream “across multiple stocks and exchanges” 

from January 3, 2006 to February 3, 2011.  They detected 18, 520 sub-second “extreme  
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events” which, in turn were coupled to “slower global instabilities”.   A possible key factor 

underlying this instability, according to Austin Gerig (2012) is price synchronization:  If two 

securities are closely related, a price change in the first will generate, almost instantly, a 

similar price change in the second.  This process, a “gargantuan task” in the traditional stock 

market, given the more than 1000 transactions per second in US equities alone, can become 

highly destabilizing in an ultrafast trading environment. Gerig’s bio-inspired model proposes 

that HFT “efficiency”---here, the rapid information transfer between related individual 

equities---may yield coordinated collective behavior analogous to that of animal groups 

(herds of ungulates; schools of fish).  So, following Levine (2014), we might ask:  Is HFT too 

efficient?  Holly Bell (2013) suggests it is not, proffering a defense of HFT as the ultrafast 

realization of Eugene Fama’s “efficient market”.  Fama (1970) had famously argued that, at 

any given time, prices were an expression of all the available information on a particular 

stock market. This property was largely due to the preponderance of rational investors---the 

neoclassical Homo economicus; but a measure of irrational behavior was also consistent with 

the view (Szyszka, 2007).   The latter behavior is generally uncorrelated, and so the 

investment decisions would likely cancel each other out. Alternatively, a rare (but in 

principle, possible) coordinated movement would result in a stabilizing counter-movement 

by rational arbitrageurs.  In Bell’s model, HFT is a novel micro-world, differing profoundly 

from the traditional market, where algorithms, as agents, are almost instantly aware of price 

movements of other agents (Bell, 2013), and adjust their investment behavior (bid-and-ask 

decisions) accordingly.  Volatility does not result, therefore, from irrationality and swarming 

in the HFT micro-world, but is primarily due to the extraneous over-corrections of individual 

investors to dramatic economic events (e.g., the subprime mortgage crisis).   These HFT 

models, and many others not considered here, would be appropriate starting-points for a 

partial-modeling strategy.  Thus, the HFT swarming behavior described by Austin Gerig 

systemically resembles that examined by Caetano and Yoneyama (2015) in a macroeconomic 

BN model of contagion in BRICS countries.  Similarly, the putative efficiency of HFT 

claimed by Holly Bell would be amenable to BN approaches which model hubs and feedback 

loops, evaluate their connectivity, and their stabilizing effects (Kwon and Cho, 2007).  
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4. Conclusion.  

 

     Neoclassical economics, the traditional framework of the science, is widely viewed as an 

obsolete relic of early 20th century thought (Ackerman, 2002; Colander, 2007; Nadeau, 2008)  

Its obsolescence, it is held, is tellingly reflected in its axiomatized structure, its demonstrated 

inability to predict financial crises, and in its potential to generate ineffective and dangerous 

policies.  This assessment may be correct.  Yet it is also arguable that the neoclassical view 

will---and should---persist, at least in the short run, in the form of input models that 

contribute to a synthetic theory.  What is required for theoretical advance, as well for 

informed policy, is the deployment of today’s powerful computational platforms to initiate 

the interactions of semi-autonomous partial models.  As an intriguing digital mimicry of the 

human creative process---with demonstrated successes in medicine and cell biology---partial 

models are cognitive tools which can generate new theories in a manner no one can 

anticipate.   This property is of signal importance because it impedes the Procrustean habit:  

The rote imposition of outmoded, but dominant views on non-conforming, recalcitrant data.  

Economics’ self-critical mood may thus have a salutary effect:  The emergence of a changed 

science in which models are not formally derived from a set of governing axioms, but are 

cognitive instruments in a regime of exploration.        
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